
Active Memory Sharing @ Australia Post
2009 IBM Power Systems Technical Symposium. 10-13th August, Sydney, Australia

2

Purpose
� Share our AMS experience with AIX community.
� Exchange ideas with other AIX customers.
� Demonstrate use of latest technology, outside of IBM.
� Provide feedback to IBM development.

Audience
� Technical
� AIX

Who is this bloke!?
� Chris Gibson - chris.gibson@auspost.com.au
� AIX Specialist @ Australia Post.
� IBM CATE, System p platform and AIX 5L, technical writer for IBM Systems

Magazine, IBM developerWorks and a co-author of the IBM Redbooks publication,
"NIM from A to Z in AIX 5L."

3

Active Memory Sharing - Early Ship Program
� Post was nominated and accepted. Had to sign non-disclosure.
� Commitment to testing the product and providing regular feedback.
� Non-production POWER6 kit upgrade to beta pre-reqs.
� IBM high Interest in SAP, DB2 / Oracle, Websphere & WPAR.
� Benchmark AMS and monitor it’s effect on performance.
�Weekly Feedback - functionality, performance, usability.
� Phase 1 Simple AMS (Post).
� Phase 2 AMS with Dual VIOS & Partition Mobility – Couldn’t do it at Post. Not on blades.

�We received:
• The code/DVD’s & Documents.
• AMS Forum for Q & As from the actual developers.
• Access to raise PMRs for bugs.

4

What is Active Memory Sharing?
� Active Memory Sharing is an enhancement to IBMs PowerVM virtualisation

technology.

� Available on POWER6 platform.

� It intelligently flows memory from one partition to another for increased utilization
& flexibility of memory.

� A bit like the shared processor pool concept. Not as fast though!

� Active Memory Sharing (AMS) initially called Virtual Real Memory (VRM). But UNIX
has had VRM for 30 years!

� Some suggested “virtual virtual real memory”☺

� AMS built on top of Virtual Memory/Paging.

5

How does Post benefit?
� On the 570, we have:

• ~30 “SOE” LPARs.
• Spare CPU power for extra LPARs.
• No spare memory.

� How we design each LPAR: How much memory?
• Policy “every SAP LPAR gets 8GB of memory”
• But do they really need that memory?
• Which LPARs could give up some memory?
• Hard to tell due to AIX optimisation of memory!

� Analysis shows not all LPARs are busy at the same time:
• Some LPARs busy once a month.
• Some LPARs have occasional use.

� Can we rebalance memory use? YES with AMS.

IBM

System p5

IBM

IBM

System p5

IBM

6

AMS – Memory Utilisation.
� Dedicated memory.

• Each LPAR owns its memory.
• Un-used memory Æ is wasted.
• Over-used memory Æ pages to disk /.
• Manual dynamic memory change is rare.

� Partitions with shared memory.
• Memory is allocated to shared pool.
• Assigned to LPAR “On Demand”.
• Un-used memory can be used to build more

LPARs.

7

AMS POC Environment
� JS22 Blade. Running VIOS 2.1.0.1 FP 20 and IVM. 16GB Memory and 4 processors.

� Two LPARs running AIX v6.1 TL2 SP2 (migrated AP AIX 5.3 SOE image):
• Upgraded the blade firmware to EA340_043_039.
• Upgraded VIOS on blade to 2.1.0.1-FP-20.0.
• Applied AMS efixes to VIOS and AIX LPARs.
• Applied VET code for AMS activation.
• Defined a shared memory pool on the blade.

� Shared Memory Pool size = 12GB. Leave some memory for our VIOS and Hypervisor.

� Configured two shared memory partitions:
• One LPAR running an instance of SAP/Oracle.
• The other LPAR is running three WPARs for SAP, Wily and Oracle Grid Control.

� Memory usage: working set determined via svmon prior to switch over to shared memory.

�Working set = pages required to run.
• LPAR1 (bxaix85) - 1 SAP Instance - 6GB RAM - 60% wset (3.6GB).
• LPAR2 (bxaix86) – 3 instances. Each instance in WPAR - 8GB - 70% wset (5.7GB).
• 9.3GB working set.

8

� Both LPARs were originally dedicated memory partitions.
� Converted to shared memory partition by changing LPAR profile.
� Shared Memory Pool Size 12GB.

• LPAR1 6GB
• LPAR2 8GB
• 14GB != 12GB
• Does that work?

1. If 2 LPARs started = it fits
2. If Working Set ~ 12 GB Æ it works
3. If Working Set > 12 GB Æ paging
4. If Working Set >> 12 GB Æ lots of paging

Dedicated to Shared Memory

9

AMS Setup
� Paging Virtual I/O Server - provides paging services for a shared memory

pool and manages the paging spaces for shared memory partitions.
� Not possible to assign more than one paging Virtual I/O Server to the

shared memory pool (at this time).
� Active Memory Sharing enables dynamic memory management among

multiple LPARs by allocating memory on demand.
�As a result, the hypervisor has to use a paging device to back up the

excess memory that it cannot back up using the physical memory.
� AMS Paging Devices. Auto-config with IVM.
$ lsdev | grep Paging

vrmpage0 Available Paging Device - Logical Volume

vrmpage2 Available Paging Device - Logical Volume

$ lsvg -lv rootvg | grep vrm

lv00 vrmdevice 64 64 1 open/syncd N/A

lv02 vrmdevice 64 64 1 open/syncd N/A

10

AMS – Memory Subscription
� Non overcommit: The amount of real memory available in the shared pool is

enough to cover the total amount of logical memory configured.

� Logical overcommit: The logical memory in use at a given time is equal to the
physical memory available in the shared memory pool. That is, the total logical
configured memory can be higher than the physical memory, however the working
set never exceeds the physical memory.

� Physical overcommit: The working set memory requirements can exceed the
physical memory in the shared pool. Therefore, logical memory has to be backed
by both the physical memory in the pool and by the paging devices. In the case of
“over commitment”, the hypervisor backs the excess logical memory using paging
devices that are accessed through its paging Virtual I/O Server.

11

AMS – Workload selections
�Workloads that are not maximizing physical memory consumption are prime AMS

candidates.

� Logical overcommit: For workloads that peak at different times. Have low average
memory residency requirements. Do not have sustained loads, such as test and
development environments. Failover and backup partitions that are used for redundancy
that require resources only when the primary server goes down.

� Physical overcommit: Workloads that use a lot of AIX file cache. Less sensitive to I/O
latency such as file servers, print servers, and network applications. Workloads that are
inactive most of the time. NIM?

� Dedicated memory partitions: Use dedicated memory for workloads that have high quality
of service requirements, have high sustained memory consumption, mandate predictable
performance and have sustained high CPU utilization and have high memory bandwidth
requirements

12

AMS – Algorithm Part 1
� State 1) If it fits:

• Local paging AIX level.
• Not an issue.

� State 2) If it nearly fits? Æ Co-operative Mode (CMM)
• Hypervisor asks AIX for help once per second.
• AIX then frees memory, if necessary paging out.
• AIX Tuning on how aggressive:

File system cache , programs too or none.
• Loans pages to Hypervisor.
• Hypervisor gives pages to high demand LPAR.

50

40
30
20
10
 0
10
20
30
40
50

120

100

80

0
20

20

40

60

60
40

FF
OO

C
O

C
O

50

40
30
20
10
 0
10
20
30
40
50

120

100

80

0

20

20

40

60

60

40

FF
OO

C
O

C
O

13

AMS – Algorithm Part 2
� State 3) If this is not enough?

• Hypervisor gets aggressive.
• Steals some pages (Assuming Least Recently Used).
• Asks VIOS to page memory out.
• Hypervisor gives pages to high demand LPAR.

� Now LPAR accesses a page that is not present:
• Causes page fault,
• Hypervisor checks if it’s a “hypervisor paged” page,
• If yes, it recovers the page and restarts the instruction,
• If no, it passes the page fault onto AIX to handle as normal,

� State 4) Buy more memory !!!!!

FF
OOCOC

O

50

40
30
20
10
 0
10
20
30
40
50

120

100

80

0
20

20

40

60

60
40

14

AMS in action – Part 1
� Memory from bxaix85 has been loaned to bxaix86.
kthr memory page faults cpu hypv-page

------- --------------------- ------------------------------------ ------------------ ----------------------- -------------------------

r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec hpi hpit pmem loan
0 0 685577 263910 0 0 0 0 0 0 6 181 256 1 2 98 0 0.02 3.8 0 0 4.00 2.00

� bxaix86 is idle.
kthr memory page faults cpu hypv-page

------- --------------------- ------------------------------------ ------------------ ----------------------- -------------------------

r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec hpi hpit pmem loan
0 0 1897574 2812 0 0 0 0 0 0 22 1212 1066 7 4 89 0 0.05 13.1 0 0 8.00 0.00

�Workload starts on bxaix85. The memory that it loaned to bxaix86 is borrowed again.
kthr memory page faults cpu hypv-page

------- --------------------- ------------------------------------ ------------------ ----------------------- -------------------------

r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec hpi hpit pmem loan
0 0 685577 263910 0 0 0 0 0 0 6 181 256 1 2 98 0 0.02 3.8 0 0 4.63 1.37
…

1 0 685576 263911 0 0 0 0 0 0 4 232 238 0 2 98 0 0.01 3.6 0 0 4.67 1.34
…

1 0 685575 263912 0 0 0 0 0 0 7 174 237 1 2 98 0 0.02 3.9 0 0 4.68 1.31

� The working set of both LPARs is now larger than the shared memory pool size. Hypervisor Paging
occurs on bxaix86, as memory is given back to bxaix85.

kthr memory page faults cpu hypv-page

------- --------------------- ------------------------------------ ------------------ ----------------------- -------------------------

r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec hpi hpit pmem loan
66 0 1891470 2636 0 47 0 0 0 0 56 870 731 19 26 56 0 0.18 45.2 414 1779 6.44 0.00

15

AMS in action – Part 2
� Hypervisor Paging stops on bxaix86 once bxaix85 has enough memory to complete it’s work.
kthr memory page faults cpu hypv-page

------- --------------------- ------------------------------------ ------------------ ----------------------- -------------------------

r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec hpi hpit pmem loan
0 0 1891176 9083 0 0 0 0 0 0 35 1226 1213 10 5 86 0 0.06 16.2 12 34 6.57 0.00

0 0 1891175 9084 0 0 0 0 0 0 38 1149 1109 9 5 86 0 0.06 15.2 0 0 6.57 0.00

� Once bxaix85 is finished it’s workload, a job starts on bxaix86. Memory is, again, loaned out from bxaix85
to bxaix86.

kthr memory page faults cpu hypv-page

------- --------------------- ------------------------------------ ------------------ ----------------------- -------------------------

r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec hpi hpit pmem loan

1 0 694653 135090 0 0 0 0 0 0 4 153 233 0 1 98 0 0.01 3.4 0 0 5.43 0.57

1 0 694653 135090 0 0 0 0 0 0 6 127 246 0 2 98 0 0.01 3.6 0 0 5.43 0.57

System configuration: lcpu=8 mem=6144MB ent=0.40 mmode=shared mpsz=12.00GB

kthr memory page faults cpu hypv-page

------- --------------------- ------------------------------------ ------------------ ----------------------- -------------------------

r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec hpi hpit pmem loan

0 0 742914 1054 0 0 0 128 128 0 3 404 258 1 3 96 0 0.02 5.5 0 0 4.94 1.06

16

AMS in action – Part 3
�AMS Loan Policy can be changed using vmo.

vmo -L ams_loan_policy
NAME CUR DEF BOOT MIN MAX UNIT TYPE

DEPENDENCIES
--
ams_loan_policy 1 1 1 0 2 numeric D
--

vmo -h ams_loan_policy
Help for tunable ams_loan_policy:
Purpose:
This tunable toggles the loaning behavior when shared memory mode is enabled.
Values:

Default: 1
Range: 0 - 2
Type: Dynamic
Unit: numeric

Tuning:
When the tunable is set to 0, loaning is disabled. When set to 1, loaning of file cache

is enabled. When set to 2, loaning of any type of data is enabled. In response to low
memory in the AMS pool, the VMM will free memory and loan it to the hypervisor.

17

IBM Early Ship Program experience.
� Challenging! Finding the time to test it! Finding the most optimal configuration and

settings was difficult at first. Along with determining the working set of an LPAR.
But with experience it becomes easier.

� The excellent documentation provided made this process much smoother! The
'Performance White Paper' and the 'Red Paper' were the best sources of
information.

� Ease of configuration. The potential for no more "wasted" or "idle" memory. Makes
you wonder "Why didn't we (IBM) think of this sooner?"

� For our non-prod systems (20-30 LPARS), it is a good fit. Many of our non-prod
systems remain idle for extended periods of time. Only a few are busy. Being able
to direct "idle" memory away from LPARs that don't need it right now, to LPARs
that do, is a amazing!

� Provide input into best practices guide. Real-world scenarios and advice. Show
typical best practice configurations for a variety of workloads. Focus on
commercial environments (in particular SAP systems!).

� Support for multiple shared memory pools (option to create several shared memory
pools in one system) – Separate prod from non-prod. Isolate certain workloads
from each other.

☺

18

� Required hardware, AIX version, VIOS version and Firmware for our non-
production systems:
9 An IBM Power System based on the POWER6 processor.
9 Enterprise PowerVM activation for Active Memory Sharing.
8 Firmware level 340_070.
9 HMC version 7.3.4 for HMC managed systems.
8 Virtual I/O Server Version 2.1.0.1-FP20.0.
8 AIX 6.1 TL3
9 Micro-partition only
9 Virtual I/O only

FAQ - Pre-Requisites for Non-Prod @ Post

19

1. Dual Paging VIOS supported (non-blade env)? - Now supported.
2. LPM + AMS supported? Blade env? - Now supported but not used by any customers yet.
3. How many users of AMS in beta? Prod? - 10 customers part of the beta. Germany=6, Austria=1,
USA=2, Australia=1. None using it production at GA.
4. Typical configurations/usage seen thus far? - Small configurations - 2 or 3 LPARs. All
SAP/Oracle!
5. Applications? SAP/Oracle.
6. WPARs? German customer - large WPAR site.
7. Future plans - new features? Multiple Shared Memory Pools.
8. Will there be a best practice Redbook at some point in the future? Real world scenarios?
Highlight best candidates for AMS? Future Redbook update planned.

FAQ – Supported Configurations & Future Plans

20

� Update our HMCs to latest level.
� Update firmware on all our POWER6 systems.
� Upgrade VIO servers to version 2.1.
� Upgrade all our LPARs to AIX 6.1.
� Produce a migration strategy for moving to AMS in non-prod i.e. handful of LPARs,

test for several months. Migrate remaining LPARs on 570 to AMS? 595-2 non-prod
LPARs next?

� HACMP standby LPARs also potential candidates for AMS. The Primary HA LPARs
could have dedicated memory, while the Standby LPARs could have shared
memory, allowing it to share memory with other LPARs. Less "idle" memory.

� Test with dual VIOS, Partition Mobility (and HACMP?).
� Training on AMS. Need to understand performance implications in a virtualised

memory environment.

AMS - To do list.

21

� Configuring AMS is a good way to learn how it works!
� Enter AMS VET code. Verify applied OK.
$ lsvet -t hist | grep Memory

time_stamp=02/25/2009 23:24:31,entry=[VIOSI0500042C-0617] Active Memory Sharing enabled.

� Prior to creating a shared memory pool.

AMS Configuration Part 1.

22

� Creating the shared memory pool.

AMS Configuration – Part 2.

23

� Defining the shared memory pool size and paging device location.
� rootvg location for hypervisor paging devices. Recommend SAN.

AMS Configuration – Part 3.

24

� Shared memory pool settings.

� Shared memory pool view from the VIOS/IVM.
$ lshwres -r mempool -F curr_pool_mem,paging_storage_pool
12288,rootvg

AMS Configuration – Part 4.

25

� Switch LPAR from dedicated to shared memory. Shutdown LPAR first. Change the profile.

� Shared memory partition profile settings.

AMS Configuration – Part 5.

26

� Switch LPAR from shared to dedicated memory. Shutdown LPAR first. Change the profile.

� Paging devices automatically created with IVM.

� Switch LPAR from shared to dedicated memory. Shutdown LPAR first. Change the profile.

AMS Configuration – Part 6.

27

� AMS paging devices. View from VIOS.
$ lsvg -lv rootvg | grep vrm

lv00 vrmdevice 64 64 1 open/syncd N/A

lv02 vrmdevice 64 64 1 open/syncd N/A

$ lsdev | grep vrm

vrmpage0 Available Paging Device - Logical Volume

vrmpage2 Available Paging Device - Logical Volume

$ lsdev -dev vrmpage0 -attr

attribute value description user_settable

LogicalUnitAddr 0x8100000000000000 Logical Unit Address False

aix_tdev lv00 Target Device Name False

redundant_usage no Redundant Usage True

storage_pool rootvg Storage Pool False

vasi_drc_name U7998.61X.10071DA-V1-C15 VASI DRC Name True

vrm_state active Virtual Real Memory State True

vtd_handle 0x100016e24678d Virtual Target Device Handle False

AMS Configuration – Part 7.

28

� lparstat and vmstat output from shared memory partition.
$ lparstat -i | grep -i memory

Online Memory : 4096 MB

Maximum Memory : 16384 MB

Minimum Memory : 256 MB

Memory Mode : Shared
Total I/O Memory Entitlement* : 77.000 MB

Variable Memory Capacity Weight** : 64

Memory Pool ID : 0

Physical Memory in the Pool : 12.000 GB

*The I/O entitled memory represents the maximum amount of physical memory that is guaranteed to be available for I/O mapping by a partition at any given time.

**Partitions are given weight to enforce priority in allocating memory

$ vmstat -hw

System configuration: lcpu=8 mem=4096MB ent=0.40 mmode=shared mpsz=12.00GB

kthr memory page faults cpu hypv-page

------- --------------------- ------------------------------------ ------------------ ----------------------- -------------------------

r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec hpi hpit pmem loan
1 1 705237 288891 0 0 0 0 2 0 16 1214 268 0 0 99 0 0.00 0.2 5968 13564 4.00 0.00

AMS Configuration – Part 8.

29

� In a dedicated memory partition, svmon can be used to measure the working set size. The command
“svmon –G” shows the “inuse” memory value.

� Existing tools such as topas and vmstat have been enhanced to report physical memory in use,
hypervisor paging rate, hypervisor paging rate latency, and the amount of memory loaned by AIX to
the hypervisor.

pmem : Physical memory in GBytes allocated to shared memory partitions from the shared memory pool at a given time.

AMS Monitoring.

30

� svmon is also AMS aware.

AMS Monitoring - continued.

31

�Whoopee! The feature we have all being waiting for is here - Active Memory Sharing.
� It is the final piece of the jigsaw to creating a fully virtualised environment.
�We can now oversubscribe memory on a POWER6 system and let the system deploy memory where we

need it. No more DLPAR operations required!
� Still a lot to learn! Performance tuning and monitoring changes.
� Traditional AIX memory monitoring will need to be widened. New considerations with AMS and logical

memory.
� Need to adjust our perspective on monitoring and managing memory…just like we did when shared

processor LPARs were introduced.
� Plan for the migration to AMS.

AMS is here! Now what?

32

� PowerVM Virtualization Active Memory Sharing Redpaper – Introduces Active Memory Sharing on
IBM Power Systems based on POWER6 Processor Technology:

http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/redp4470.html?Open

� IBM PowerVM Active Memory Sharing Performance White paper – This white paper provides guidance
on workload selection and workload consolidation along with performance best practices for AMS:

http://www-03.ibm.com/systems/power/software/virtualization/whitepapers/ams_perf.html

� AIX6 & POWER6 Hands-On Technical Demo Movies – Look for demos on AMS concepts, setup and
monitoring:

http://www.ibm.com/developerworks/wikis/display/WikiPtype/Movies

� Configuring Active Memory Sharing – A customer’s experience.
http://www.ibm.com/developerworks/aix/library/au-pwr6_ams

AMS References.

